Introduction to Radioactivity Environmental Sampling techniques 2. (ktudminta2a171m)

Henriett Daróczi Doctoral School of Environmental Sciences PhD student Northern Building 0.123A daroczi.henriett@gmail.com

• History

- 1895. Wilhelm Conrad Röntgen discovers a type of electromagnetic radiation which he calls X-rays
- 1896. Henri Becquerel discovers the principle of radioactive decay when he exposes photographic plates to uranium
- 1897. Sir Joseph John Thomson first describes his discovery of the electron

• History

- 1898. Marie and Pierre Curie announce discovery of two substances they call polonium and radium.
- 1899. Ernest Rutherford classifies two types of radiation, alpha rays and beta rays.
- Henri Becquerel discovers that radiation from uranium consists of charged particles and can be deflected by magnetic fields.

Marie Curie coined the term radioactivity
 Radiation
 Activity

- Marie Curie coined the term radioactivity
 Radiation
 Activity
 - Ionizing radiation
 - Non-ionizing radiation

- Marie Curie coined the term radioactivity
 Radiation
 Activity
 - Electromagnetic radiation
 - Particle radiation
 - Acoustic radiation
 - Gravitational radiation

Electromagnetic Radiation

Electromagnetic Radiation

Electromagnetic Radiation

Particle Radiation

• Types of decays:

Particle Radiation

• Types of decays:

- Alpha decay
- Beta decay
- Gamma decay
- Neutron emission
- Electron capture
- Proton emission
- Spontaneous fission
- Cluster decay
- Internal conversion

Alpha Decay

Negative Beta Decay

$$^{3}H \rightarrow ^{3}He + e^{-} + \widetilde{\nu}$$

$$n \rightarrow p + e^- + \widetilde{\nu}$$

Nucleus level

Nucleon level

$$d \rightarrow u + e^- + \widetilde{\nu}$$

Quark level

Negative Beta Decay

$${}^{3}H \rightarrow {}^{3}He + e^{-} + \widetilde{v}$$
 Nucleus level
 $n \rightarrow p + e^{-} + \widetilde{v}$ Nucleon level

$$d \rightarrow u + e^- + \widetilde{v}$$
 Quark level

Gamma Decay

Examples for Decays

$$^{14}_{6}\text{C} \rightarrow ^{14}_{7}\text{N} + e^- + \overline{v}_e$$

$$^3_1\text{H} \rightarrow ^3_2\text{He} \textbf{+} \textbf{e}^- \textbf{+} \overline{\textbf{v}}_{e}$$

$$^{23}_{12}\text{Mg} \rightarrow ^{23}_{11}\text{Na} + e^+ + v_e$$

$${}^{81}_{36}$$
Kr + e⁻ $\rightarrow {}^{81}_{35}$ Br + v_e

Examples for Decays

$${}^{14}_{6}\text{C} \rightarrow {}^{14}_{7}\text{N} + e^- + \overline{v}_e$$

$${}^{3}_{1}\text{H} \rightarrow {}^{3}_{2}\text{He} + e^{-} + \overline{v}_{e}$$

Negative Beta Decay

$$^{23}_{12}Mg \rightarrow ^{23}_{11}Na + e^+ + v_e$$

Positive Beta Decay

Electron Capture

$$^{81}_{36}$$
Kr + e⁻ $\rightarrow ^{81}_{35}$ Br + v_e

The Overview of the Decays

Table of Nuclides - Segre chart

Table of Nuclides - Segre chart

Parent

atom

n

Marie Curie coined the term radioactivity
 Radiation
 Activity

decay/ desintergration per second

In a simple decay, if the number of decaying nucleus is N(t)

$$A = -\frac{dN}{dt}$$

In a simple decay, if the number of decaying nucleus is N(t)

$$A = -\frac{dN}{dt}$$

In a general case, the activity is proportional to the number of decaying atoms

In a simple decay, if the number of decaying nucleus is N(t)

In a general case, the activity is proportional to the number of decaying atoms

In a simple decay, if the number of decaying nucleus is N(t)

In a general case, the activity is proportional to the number of decaying atoms

equation

Exponential Decay Law

 $N(t) = N_0 e^{-\lambda t}$

Exponential Decay Law

Decay constant
$$\lambda$$

$$N(t) = N_0 e^{-\lambda t}$$

Exponential Decay Law

Decay constant λ

Half-life time $T_{1/2}$

$$N(t) = N_0 e^{-\lambda t}$$

Exponential Decay Law

Decay constant λ

Half-life time $T_{1/2}$

$$N(t) = N_0 e^{-\lambda t}$$

$$N_0 / 2 = N_0 \exp(-\lambda T_{1/2})$$

Exponential Decay Law

Decay constant λ

Half-life time $T_{1/2}$

$$N(t) = N_0 e^{-\lambda t}$$

$$N_0 / 2 = N_0 \exp(-\lambda T_{1/2})$$

$$\lambda = \frac{\ln 2}{T_{1/2}}$$

Half-life time

$$N(t) = N_0 e^{-\lambda t}$$

$$\lambda = \frac{\ln 2}{T_{1/2}}$$

Half-life time

$$N(t) = N_0 e^{-\lambda t}$$

$$\lambda = \frac{\ln 2}{T_{1/2}}$$

Decay chain

 $\text{if } \lambda_1 {<} {<} \lambda_2 {<} {<} \lambda_3 \ldots {<} {<} \lambda_i \\$

Decay chain if $\lambda_1 << \lambda_2 << \lambda_3 \dots << \lambda_i$

$$\begin{aligned} \frac{dN_1}{dt} &= -\lambda_1 N_1 \\ \frac{dN_2}{dt} &= -\lambda_2 N_2 + \lambda_1 N_1 \\ \frac{dN_3}{dt} &= -\lambda_3 N_3 + \lambda_2 N_2 \\ \cdot \\ \cdot \\ \cdot \\ \frac{dN_i}{dt} &= -\lambda_i N_i + \lambda_{i-1} N_{i-1} \end{aligned}$$

Decay chain if $\lambda_1 < < \lambda_2 < < \lambda_3 \dots < < \lambda_i$

$$\frac{dN_2}{dt} = -\lambda_2 N_2 + \lambda_1 N_1$$
$$\frac{dN_3}{dt} = -\lambda_3 N_3 + \lambda_2 N_2$$
$$\cdot$$
$$\cdot$$
$$\frac{dN_i}{dt} = -\lambda_i N_i + \lambda_{i-1} N_{i-1}$$

 $\frac{dN_1}{dN_1} = -\lambda_1 N_1$

dt

 dN_{2}

$$\frac{dN_1}{dt} = \frac{dN_2}{dt} = \frac{dN_3}{dt} = \dots = \frac{dN_i}{dt} = \dots = 0$$

Decay chain $\operatorname{if} \overline{\lambda_1 < <\lambda_2 < <\lambda_3} \ldots < <\lambda_i$ $\frac{dN_1}{dt} = \frac{dN_2}{dt} = \frac{dN_3}{dt} = \dots = \frac{dN_i}{dt} = \dots = 0$

$$\begin{aligned} \frac{dN_1}{dt} &= -\lambda_1 N_1 \\ \frac{dN_2}{dt} &= -\lambda_2 N_2 + \lambda_1 N_1 \\ \frac{dN_3}{dt} &= -\lambda_3 N_3 + \lambda_2 N_2 \\ \cdot \\ \cdot \\ \cdot \\ \frac{dN_i}{dt} &= -\lambda_i N_i + \lambda_{i-1} N_{i-1} \end{aligned}$$

$$\lambda_1 N_1 = \lambda_2 N_2 = \lambda_3 N_3 = \dots = \lambda_i N_i = \dots = activity$$

Decay chain
if
$$\lambda_1 <<\lambda_2 <<\lambda_3 \dots <<\lambda_i$$

$$\frac{dN_1}{dt} = \frac{dN_2}{dt} = \frac{dN_3}{dt} = \dots = \frac{dN_i}{dt} = \dots = 0$$

$$\begin{aligned} \frac{dN_1}{dt} &= -\lambda_1 N_1 \\ \frac{dN_2}{dt} &= -\lambda_2 N_2 + \lambda_1 N_1 \\ \frac{dN_3}{dt} &= -\lambda_3 N_3 + \lambda_2 N_2 \\ \cdot \\ \cdot \\ \cdot \\ \frac{dN_i}{dt} &= -\lambda_i N_i + \lambda_{i-1} N_{i-1} \end{aligned}$$

 $\lambda_1 N_1 = \lambda_2 N_2 = \lambda_3 N_3 = \dots = \lambda_i N_i = \dots = activity$

Secular equilibrium

Particle Radiation - Shielding

sheet of paper

Al shielding

very thick layer of lead

light elements (hydrogen)

Interaction with Matter

Interaction of ionizing radiation with matter

Radiation Protection - Principles

Radiation Protection - Principles

- Stochastic vs Deterministic effects
- Justification
- Limitation
- ALARA
- Time
- Distance
- Shielding

Radiation Protection - Principles

- Stochastic vs Deterministic effects
- Justification: no unnecessary use of radiation is permitted, which means that the advantages must outweigh the disadvantages
- <u>Limitation:</u> each individual must be protected against risks that are too great, through the application of individual radiation dose limits
 ALARA - "As Low As Reasonably Achievable"
- <u>Time:</u> Reducing the time of an exposure reduces
- the effective dose proportionally
- <u>Distance</u>: Increasing distance reduces dose due to the inverse square law
- Shielding: absorbing the energy of the radiation

Grouping by Origin

- Oprimordial Radionuclides
- Secondary Radionuclides
- Cosmogenic Radionuclides
- Artifical Radionuclides

Grouping by Origin

- Primordial Radionuclides are produced in stellar nucleosynthesis and supernova explosions, their half-lives are so long (>100 million years)
- Secondary Radionuclides derived from the decay of primordial radionuclides

Cosmogenic Radionuclides are continually being formed in the atmosphere due to cosmic rays.

Decay series (4n)

IAEA (2013)

Decay series (4n+1)

Decay series (4n+2)

Uranium decay series.

IAEA (2013)

Decay series (4n+3)

IAEA (2013)

Table 1. Radionuclides and their activity concentration range in the free atmosphere near ground level (United Nations, 1982; Bundesminister für Umwelt, Naturschutz und Reaktorsicherheit, 1984; Porstendörfer et al., 1990)

Radionuclide Natural	Half-time		Activity concentration (mBq m^{-3})	
	³ H	12.3 a	≈ 20	
	¹⁴ C	5736 a	≈ 40	
	⁷ Be	53.6 d	1–7	
	RnD*	164 µs–26.8 min	1000-50,000	
	²¹⁰ Pb	22.3 a	0.2-1	
	²¹⁰ Po	138.4 d	0.03-0.3	
	²¹² Pb	10.6 h	20-1000	
	²¹² Bi	60.6 min	10-700	
Artificial	¹³¹ I	8.04 d	< 0.0001 (16,000 ⁺)	
	¹³⁷ Cs	30.1 a	$0.0005 - 0.005 (4000^{\dagger})$	
	¹⁰⁶ Ru	386.2 d	0.0001–0.002 (2000 [†])	

* Short-lived radon daughters: ²¹⁸Po, ²¹⁴Pb, ²¹⁴Bi and ²¹⁴Po.

⁺After the nuclear accident in Chernobyl the highest value in Göttingen, 2–3 May 1986.

J. Porstendörfer (1994)

Radon isotopes

Isotope sign	Name	First member of decay series	Mother element	Half-life time
²²² Rn	Radon	²³⁸ U	²²⁶ Ra	3.8 d
²²⁰ Rn	Toron	²³² Th	²²⁴ Ra	55 s
²¹⁹ Rn	Aktinon	²³⁵ U	²²³ Ra	4 s

IAEA (2013)

Recoil ranges depending on media: •solid 20-70 nm •air ~60μm •liquid100 nm

IAEA (2013)

J. Porstendörfer (1994)

J. Porstendörfer (1994)

Bibliography

- International Atomic Energy Agency (2013): Measurement and calculation of radon releases from NORM residues. ISBN 978–92–0–142610–9
- Horváth, Á. et al. (2012): Environmental Physics Methods Laboratory Pracitces
- Encyclopædia Britannica

https://www.britannica.com/science/neptunium-series

- J. Porstendörfer (1994): Properties and behaviour of radon and thoron and their decay products in the air. *Journal of Aerosol Science*, Vol. 25, p 219-263.
- Khan et al., J Phys Chem Biophys 2017, 7:3 DOI: 10.4172/2161-0398.1000254
- nuclear-power.net
- wikipedia.org